1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
|
const int N = 110, M = 6100;
typedef pair<int, int> PII;
class Solution {
public:
int h[N], e[M], w[M], ne[M];
bool vis[N];
int dis[N];
int idx = 0, n = 0;
int dijkstra(int k){
memset(vis, false, sizeof(vis));
memset(dis, 0x3f, sizeof(dis));
dis[k] = 0;
// dijkstra堆优化,优化找最短路径的过程
// 稀疏图
// T: O(mlogn)
priority_queue<PII, vector<PII>, greater<PII> > heap;
heap.push({dis[k], k});
while(heap.size()){
auto t = heap.top();
heap.pop();
int distance = t.first, node = t.second;
if(vis[node]) continue;
vis[node] = true;
for(int u = h[node]; u != -1; u = ne[u]){
int x = e[u];
if(dis[x] > dis[node] + w[u]){
dis[x] = dis[node] + w[u];
heap.push({dis[x], x});
}
}
}
for(int i = 1; i <= n ; i++){
if(dis[i] == 0x3f3f3f3f) return -1;
}
return *max_element(dis+1, dis+n+1);
}
int networkDelayTime(vector<vector<int>>& times, int n_, int k) {
n = n_;
for(int i = 1; i <= n; i++){
h[i] = -1;
}
for(auto& edge: times){
add(edge[0], edge[1], edge[2]);
}
int res = dijkstra(k);
if(res != -1){
return res;
}else{
return -1;
}
}
void add(int a, int b, int w_){
e[idx] = b; w[idx] = w_; ne[idx] = h[a]; h[a] = idx++;
}
};
|