1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
  | 
const int N = 110, M = 6100;
typedef pair<int, int> PII;
class Solution {
public:
    int h[N], e[M], w[M], ne[M];
    bool vis[N];
    int dis[N];
    int idx = 0, n = 0;
    int dijkstra(int k){
        memset(vis, false, sizeof(vis));
        memset(dis, 0x3f, sizeof(dis));
        dis[k] = 0;
        // dijkstra堆优化,优化找最短路径的过程
        // 稀疏图
        // T: O(mlogn)
        priority_queue<PII, vector<PII>, greater<PII> > heap;
        heap.push({dis[k], k});
        while(heap.size()){
            auto t = heap.top();
            heap.pop();
            int distance = t.first, node = t.second;
            if(vis[node])   continue;
            vis[node] = true;
            
            for(int u = h[node]; u != -1; u = ne[u]){
                int x = e[u];
                if(dis[x] > dis[node] + w[u]){
                    dis[x] = dis[node] + w[u];
                    heap.push({dis[x], x});
                }
            }
        }
        for(int i = 1; i <= n ; i++){
            if(dis[i] == 0x3f3f3f3f)   return -1;
        }
        return *max_element(dis+1, dis+n+1);
    }
    int networkDelayTime(vector<vector<int>>& times, int n_, int k) {
        n = n_;
        for(int i = 1; i <= n; i++){
            h[i] = -1;
        }
        for(auto& edge: times){
            add(edge[0], edge[1], edge[2]);
        }
        int res = dijkstra(k);
        if(res != -1){
            return res;
        }else{
            return -1;
        }
    }
    void add(int a, int b, int w_){
        e[idx] = b; w[idx] = w_; ne[idx] = h[a]; h[a] = idx++;
    }
};
  |